A hybrid method without extrapolation step for solving variational inequality problems

نویسندگان

  • Yu. V. Malitsky
  • V. V. Semenov
چکیده

In this paper, we introduce a new method for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. The iterative process is based on two well-known projection method and the hybrid (or outer approximation) method. However we do not use an extrapolation step in the projection method. The absence of one projection in our method is explained by slightly different choice of sets in hybrid method. We prove a strong convergence of the sequences generated by our method. 2010 Mathematics Subject Classification: 47J20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid LQP Alternating Direction Method for Solving Variational Inequality Problems with Separable Structure

In this paper, we presented a logarithmic-quadratic proximal alternating direction method for structured variational inequalities. The method generates the new iterate by searching the optimal step size along the descent direction. Global convergence of the new method is proved under certain assumptions.

متن کامل

Dual extrapolation and its applications to solving variational inequalities and related problems

In this paper we suggest new dual methods for solving variational inequalities with monotone operators. We show that with an appropriate step-size strategy, our method is optimal both for Lipschitz continuous operators (O(12 ) iterations), and for the operators with bounded variations (O( 1 22 ) iterations). Our technique can be applied for solving nonsmooth convex minimization problems with kn...

متن کامل

Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings

In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...

متن کامل

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

Hybrid Coevolutionary Particle Swarm Optimization for Linear Variational Inequality Problems

Solving linear variational inequality by traditional numerical iterative algorithm not only can not satisfy parallel, but also its precision has much relationship with initial values. In this paper, a novel hybrid coevolutionary particle swarm optimization is used to solve linear variational inequality, which sufficiently exerts the advantage of particle swarm optimization such as group search,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2015